Midterm Exam Mathematical Physics, Prof. G. Palasantzas

- Total number of points 100
- 10 points for coming to the midterm exam
- Justify your answers for all problems

Problem 1 (20 points)

(a: 10 points) Calculate the limit $\lim _{n \rightarrow \infty} a_{n}$ with $a_{n}=\left(1-\frac{y^{2}}{n}\right)^{9 n}$ and y a finite number (b: 10 points) Is the series $\sum_{n=1}^{\infty} a_{n}$ convergent ?

Problem 2 (20 points)

Consider a ball that drops from a height $\mathrm{h}=2 \mathrm{~m}$. Consider that every time it bounces on the ground it will lose 30% of its energy. Calculate the total vertical distance that the ball travels until it stops on the ground (take infinite number of bounces until it stops).

Problem 3 (20 points)

Find the interval (15 points) and the radius (5 points) of convergence of the power series $\sum_{n=1}^{+\infty} \frac{y^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$ where y is a finite number.

Problem 4 (30 points)

Forced Oscillations: consider a spring with mass m, spring constant k, and damping constant $c=0$, and let $\omega=\sqrt{k / m}$. If an external force $F(t)=F_{0} \cos \omega t$ is applied (the applied frequency equals the natural frequency), use the method of undetermined coefficients to show that the motion of the mass is given by

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0}}{2 m \omega} t \sin \omega t
$$

The general equation of motion of the mass m is: $m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t)$

Problem 1
a)

$$
\begin{aligned}
& b_{n}=9 n \ln \left(1-y^{2} / n\right) \\
& \lim _{n \rightarrow \infty} b_{n}=9 \lim _{n \rightarrow \infty} \frac{\frac{d}{d n}\left[\ln \left(1-y^{2} / n\right)\right]}{\frac{d}{d n}\left(\frac{1}{n}\right)}=p \\
& \lim _{n \rightarrow \infty} b_{n}=9 \lim _{n \rightarrow \infty} \frac{1 /\left(1-y^{2} / n\right)\left(+y^{2} / x^{2}\right)}{\left(-1 / x^{2}\right)}=r \\
& \lim _{n \rightarrow \infty} b_{n}=-9 y^{2} \lim _{n \rightarrow \infty} \frac{1}{1-y^{2} / n}=-9 y^{2} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} b_{n}=-9 y^{2} \quad \lim _{n \rightarrow \infty} \frac{1}{1-y^{2} / n}=e^{-9 y^{2}}=e^{-(3 y)^{2}} \\
& \text { Thus we have } \quad \lim _{n \rightarrow \infty} a_{n}=e^{(3 y)^{2}}
\end{aligned}
$$

b) Because $\lim _{n \rightarrow 0^{\circ}} a_{n}=e^{-(3 y)^{2}} \neq 0$ the series $\sum_{n=1}^{\infty} o_{n}$ is divergent

Problem 2

$$
D=h+\underbrace{q c h}_{\substack{1-\text { Jump } \\ \text { up -down }}}+\underbrace{q c^{2} h}_{\substack{q-\text { Jump } \\ \text { up -down }}}+\underbrace{2 c^{3} h+\cdots}_{\substack{\text { 3-Jump } \\ \text { up-down }}}
$$

Thus we hove an infinite series

$$
\begin{aligned}
& \text { hus we hove an infinite series } \\
& D=h+\sum_{n=1}^{\infty} 2 c^{n} h^{*}=-h+\sum_{n=0}^{\infty} 2 C^{n} h^{*} \\
& D=-h+\underbrace{\infty \sum_{n=0}^{\infty} c^{n}=-h+2 h \frac{1}{1-c}}_{\substack{\text { Geometric } \\
\text { series }}} \\
& D=h \frac{1+c}{1-c}
\end{aligned}
$$

* you can also say $D=h+2 h C \frac{1}{1-C}$ and you have orgain

$$
D=h \frac{1+c}{1-c}
$$

Problem 3

Simply replace below x with y and you have the solution:
If $a_{n}=\frac{x^{n}}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}$, then
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-1)(2 n+1)} \cdot \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{2 n+1}=0<1$. Thus, by
the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{x^{n}}{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n-1)}$ converges for all real x and we have $R=\infty$ and $I=(-\infty, \infty)$.

Problem 4

Forced Vibrations

See in 17.3, the equation of motion: $\quad m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t)$ And set c=0

The auxiliary equation for the homogenous equation has two imaginary roots $\pm \mathrm{j} \omega$ so the solution is:

$$
x_{c}(t)=c_{1} \cos \omega t+c_{2} \sin \omega t
$$

But the natural frequency of the system equals the
frequency of the external force, so try $x_{p}(t)=t(A \cos \omega t+B \sin \omega t)$. Then we need $m\left(2 \omega B-\omega^{2} A t\right) \cos \omega t-m\left(2 \omega A+\omega^{2} B t\right) \sin \omega t+k A t \cos \omega t+k B t \sin \omega t=F_{0} \cos \omega t$ or $2 m \omega B=F_{0}$ and $-2 m \omega A=0$ (noting $-m \omega^{2} A+k A=0$ and $-m \omega^{2} B+k B=0$ since $\omega^{2}=k / m$). Hence the general solution is

$$
x(t)=c_{1} \cos \omega t+c_{2} \sin \omega t+\left[F_{0} t /(2 m \omega)\right] \sin \omega t
$$

